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Abstract. Might EEG measured while one imagines words or sentences provide 
enough information for one to identify what is being thought?  Analysis of EEG 
data from an experiment in which two syllables are spoken in imagination in 
one of three rhythms shows that information is present in EEG alpha, beta and 
theta bands.  Envelopes are used to compute filters matched to a particular ex-
perimental condition; the filters' action on data from a particular trial lets one 
determine the experimental condition used for that trial with appreciably 
greater-than-chance performance. Informative spectral features within bands 
lead us to current work with EEG spectrograms. 
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1   Introduction 

Dewan reported in 1967 [1] that he and several others could transmit letters of the 
alphabet using EEG recording; their ability to control voluntarily the amplitude of 
their alpha waves let them send letters using Morse code. Farwell and Donchin [2] 
used a second method for transmitting linguistic information by EEG; the P300 re-
sponse to targets let them determine which of a sequence of displayed letters a person 
had in mind.  Finally, Suppes and colleagues [3,4] reported that they were able to 
classify EEG responses to heard sentences and that there was information available 
through EEG concerning imagined speech.  The work reported here verifies this latter 
result and develops it further, with the aim of using EEG brain waves to communicate 
imagined speech. 

Classification experiments show that brain-wave signatures of imagined speech 
lets one distinguish linguistic content, with varying degree of success. These signa-
tures include differences in alpha-, beta- and theta-band activity. Our near-term goal 
is to use such signatures to design filters that let one distinguish linguistic elements in 
real time. One application is in further experiments which provide feedback to the 
thinker as to how recognizable a particular thought is, with the aim of training the 
thinker to produce brain waves which are more discernible.   

The focus within is on the results of a single experiment in which subjects produce 
in their imagination one of two syllables in one of three different rhythms. Analysis of 
the data using envelopes within alpha, beta and theta frequency bands, spectral fea-
tures within single bands, and spectrograms in current work show that EEG provides 
considerable information on imagined speech in this experimental setting. 
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2   Methods 

Four subjects participated in an experiment with six conditions determined factorially 
through combination of two syllables and three rhythms (see Figure 1). A single ex-
perimental session comprised 20 trials for each of the six conditions; conditions were 
presented in block-randomized order. Each subject participated in six such sessions 
for a total of 120 trials per condition. EEG was recorded using a 128 Channel Sensor 
Net (Electrical Geodesics) in combination with an amplifier and acquisition software 
(Advanced Neuro Technology). The EEG was sampled at 1024Hz and on-line aver-
age referenced. Subjects were instructed to keep their eyes open in the dimly-lit re-
cording room and to avoid eye and other movement during the six seconds, following 
the cue, during which speech was imagined without any vocalization whatsoever. 

 

Fig. 1. Timelines for the six conditions, labeled at left, in the imagined speech experiment. 
Durations are indicated in eighths of a second. The syllable /ba/ was imagined in one of three 
different rhythms in conditions 1-3; the syllable /ku/ was imagined in conditions 4-6. The con-
dition for each trial was cued during an initial period of duration 4.5 sec (12/8 sec = 1.5 sec; 3 x 
1.5 sec = 4.5 sec). During this initial period, subjects heard through Stax electrostatic earphones 
either a spoken "ba" or a spoken "ku" followed by a train of clicks (arrows) indicating the 
rhythm to be reproduced.  Subjects were instructed to speak in their imagination the cued sylla-
ble, illustrated for condition 1 by {ba}, using the cued rhythm and tempo. Desired imagined 
syllable onset times reproduce the cued rhythm and are indicated by asterisks. 

3   Analysis and Results 

Our aims were to classify single trials offline according to condition and discern con-
dition signatures needed to create online filters. EEG waveform envelopes provide 
encouraging results when used to classify trials according to experimental condition. 
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These envelopes were computed for each electrode in the theta (3-8Hz), alpha (8-
13Hz) and beta (13-18Hz) frequency bands and used to construct matched filters.  
These filters work well to classify trials according to condition, yet further results 
with spectra lead us to explore a finer-grained analysis using spectrograms. 

3.1   Matched-Filter Classification Using Envelopes 

We used waveform envelopes to compute matched filters, one for each of the six 
conditions (see Figure 2).  The inner product of each matched filter with a particular 
trial's envelope provides six numbers.  The matched filter which gives rise to the 
largest inner product is the best match, and the condition to which the matched filter 
corresponds is declared the best guess as to the experimental condition for that trial.  

Offline preprocessing steps include  

• segment the EEG data to provide time-varying waveforms for each condition, 
electrode and trial; 

• remove from further consideration 18 electrodes most sensitive to electromyog-
raphic artifact:  those with the lowest positions about the head and spanning loca-
tions close to the eyes, low on the temple, at or below the ear, and at or below the 
external occipital protuberance; 

• remove the mean and linear trend from each segmented waveform; 
• low-pass filter the detrended, segmented, waveforms to remove 60Hz line noise;  
• use thresholds to identify and remove from further consideration filtered wave-

forms likely contaminated with electromyographic artifact. 

Alpha-, beta- and theta-band activity were computed for each electrode and trial us-

ing band-pass elliptic filters.  These band-pass filtered waveforms (we[t] and bottom 
right plot in Fig. 2) were Hilbert-transformed to provide corresponding envelopes 

(ve[t] and middle right plot).  The envelopes serve as input to the matched-filter classi-
fication and as data used to construct the matched filters.  An electrode's average enve-
lopes, found by averaging across trials for each of the six conditions, serve as matched 
filters with one further step:  for each electrode, pseudoinvert the six conditions' aver-

age envelopes to provide six filters (Fec[t] and top right plot). The inversion of the 
average envelopes provides filters which return an inner product of one for the corre-
sponding condition's average envelope and an inner product of zero for all other condi-
tion's average envelopes. Information may be integrated across electrodes by summing 
the measures pe,c across electrodes and determining the maximum of the resulting six 
numbers. Information may be integrated across bands by weighing individual response 
measures for the three bands by band reliability estimates or by a voting procedure. 

Classification results shown in Table 1 show that the beta band (13-18Hz) is, for 
all but one subject, the most informative frequency band; theta (3-8Hz) and alpha (8-
13Hz) are comparable for all subjects but S1. The per-condition classification per-
formance is shown for subject S2 in Fig. 3. Rows refer to a trial's actual condition, 
while columns refer to the condition of the matched filter for which the maximal 
response was obtained. Darker values indicate higher percentages of trials. These dark 
values describe diagonals, which indicates a match between a trial's actual condition 
and the condition with matched filter providing the greatest response.   



 Toward EEG Sensing of Imagined Speech 43 

 

Fig. 2. Preprocessed and band-pass-filtered waveform we[t], recorded by electrode e, is Hilbert-
transformed to provide envelope ve[t].  Shown at bottom right is the preprocessed waveform 
from an electrode with mid-parietal location from subject S1 for a trial during which {ba} is 
spoken in imagination at times 1.5, 3.0 and 4.5 sec (condition 1). Shown at middle right is the 
corresponding envelope. The inner product <, > of this envelope with each matched filter 
Fe,c[t], one filter per condition per electrode, provides six numbers pe,c. These six numbers 
measure how well the particular trial's envelope matches the filter for each condition. The 
maximum of these six numbers is used to determine the most likely condition ˜ c e . Shown at top 
right is a matched filter for condition c = 1.  

The distributions of classification performance across the scalp are similar across 
the four subjects; those for subject S4 are shown in Figure 4. The most informative 
electrodes lie largely near the top of the head (vertex) where electromyographic arti-
facts have their least influence. These distributions of information differ significantly 
from the distributions of envelope amplitude, which follow well-known patterns for 
alpha activity (parietal) and theta activity (frontal).  
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Table 1. Classification performance using matched filters for envelopes in three frequency 
bands. The fraction of correctly-classified trials (720 trials per subject, identified in the left 
column) is indicated. The chance performance level in this classification among six conditions 
is 1/6 (0.17). 

 alpha beta theta 
S1 0.38 0.80 0.63 
S2 0.63 0.87 0.59 
S3 0.44 0.68 0.46 
S4 0.64 0.62 0.59 

 

Fig. 3. Classification matrices for subject S2. Values along the diagonals indicate correct classi-
fication, while non-white values off the diagonal indicate errors. The black gray-value in the 
middle panel (beta-band) for actual condition 1 and matched filter condition 1 (top left square) 
represents 91% of the trials; lighter shades indicate smaller values (through white indicating 
0%).  Perfect performance would be indicated by all off-diagonal entries set to white. 

 

Fig. 4. Distributions of classification performance across the scalp for alpha (α), beta (β) and 
theta (θ) bands for subject S4. Darker values indicate the positions of electrodes providing 
better classification performance. 

3.2   Spectral Features 

Analysis of trials’ power spectral densities shows that differences in power within 
single frequency bands can provide information concerning trial condition. Spectral 
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differences within a single band are completely invisible to the previous analysis, 
which grouped together activity at all frequencies within a single band. 

Data for subjects S1 and S2 show that, for condition 3, there is a peak in the power 
spectrum in the range 5-6Hz, relative to baseline power measured at 3.5-4.5Hz. This 
peak is largely absent for condition 1. This difference between the average power 
spectra for conditions 3 and 1 is localized to electrodes with front central locations on 
the scalp (see Fig. 5, leftmost panels). This spectral difference alone, within the theta 
band, provides ~75% correct two-way classification between these two conditions.  
The peak and the localized spatial distribution do not exist for subjects S3 and S4 (see 
Fig. 5, rightmost panels).  

 

Fig. 5. Difference between condition 3 and condition 1 theta sub-band spectral power localized 
primarily to electrodes with front, center locations for subjects S1 and S2; this pattern is not 
evident for S3 and S4 

3.3   Spectrographic Analysis 

The spectral data suggest several things. The first is that one would do well to repre-
sent EEG data spectrographically: record power as a fine-grained function of both 
frequency and time. The second and third are more cautionary. There is a tremendous 
amount of trial-by-trial variability in EEG recordings. Adding channels, like further 
frequency bands of narrow range as in spectrograms, may have the effect of masking 
signals more effectively. Furthermore, fine subdivision of the frequency domain may 
reveal individual differences (as in Fig. 5), so that averages across subjects become 
less meaningful. These caveats notwithstanding, our current work focuses on spectro-
graphic means of identifying imagined speech.  

4   Discussion 

The syllables /ba/ and /ku/ have little semantic content in and of themselves, so that 
differences in EEG records underlying classification performance are unlikely to 
reflect semantic contributions to imagined speech production. Furthermore, each 
experimental trial starts with a period during which the cue to the condition is pre-
sented; cue recognition and response planning occur during the cue period and are 
likely absent during the following period in which EEG recording is made of imag-
ined speech. The EEG recordings analyzed here concern most likely immediate as-
pects of imagined speech production based on readout from working memory. 
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EEG electrodes record not only signals from brain cortex but also electromyog-
raphic activity. Common sources of the latter are muscles responsible for eye and 
head movements and other muscles near recording electrodes, like those in the tem-
ples and neck. Electrodes atop or close to such muscles are most sensitive to electro-
myographic activity. The most flagrant such offenders were excluded from analysis in 
the work reported here. Furthermore, recordings for which EEG signals (detrended 
and filtered to excluded 60Hz line noise) exceeded 30 µV in absolute value were 
excluded from consideration. This threshold eliminated many (but not all) recordings 
contaminated with artifact. The most informative electrodes are those positioned on 
the scalp near the top of the head (Fig. 3), and this suggests that the information is due 
more to cortical than electromyographic activity. 

Subjects were instructed to think the imagined speech without any vocal or subvo-
cal activity: without moving any muscles involved in producing overt speech. This 
contrasts with what is the most successful method yet for recognizing speech pro-
duced without any acoustic signal: surface electromyographic (SEMG) recordings 
from face and throat muscles. Substantial progress has been made in automatic speech 
recognition from surface EMG recordings of vocal tract articulators made during both 
spoken speech [5-10] and subvocalized speech [11-17]. 

Further non-acoustic methods for extracting imagined speech information potentially 
include magnetoencephalography (MEG) and invasive methods, like electrocorticogra-
phy (ECoG), which involve implanted electrodes. While there are no published positive 
results yet for classification of imagined speech using MEG, its high temporal resolution 
and moderate spatial resolution (comparable to high-density EEG) suggest its value, as 
does success in classifying heard speech [18-21]. MEG is most sensitive to cortical 
signals from surfaces perpendicular to the scalp (in sulci) while EEG is most sensitive to 
signals from parallel surfaces (gyri) [22], so that the two methods are complementary. 
While the use of electrodes implanted in the brain is limited to small clinical populations 
for which these electrodes are indicated in combination with neurosurgery, it can pro-
vide very useful information concerning imagined speech [23]. Functional magnetic 
resonance imaging (fMRI) studies have contributed significantly to our neuroscientific 
knowledge of language perception and production [24-27].  Yet the poor temporal reso-
lution of fMRI and of functional near-infrared imaging (fNIR) make these unlikely 
candidates for speech recognition. 

EEG is a non-invasive, non-injurious method for probing cortical activity which has 
a high temporal resolution, moderate spatial resolution (~2cm), a relatively low cost 
and which is increasingly portable. We feel that its greatest contribution as a brain-
computer interface is likely to be found in circumstances where a human subject is 
trained to produce activity discernible by EEG [28].  Such training can reduce the 
variability associated with imagined speech production and also help one emphasize 
aspects of imagined speech which are most easily discerned by EEG. Our next step is 
to close the loop by providing real-time feedback concerning imagined speech signals. 
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